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Abstract 

In this paper, two types of graphs of lattice implication algebras will be studied. To do so, 

the notion of equivalence relation ≡𝐴 of lattice implication algebra is first introduced. 

Then two types of graphs 𝛤𝐴(𝐿) and 𝛤𝐴(𝐿) are defined, respectively. Moreover, we 

investigate basic properties of these graphs such as planarity, connectivity, regularity, 

chordality, among others. 

 
Keywords: Lattice implication algebra, Chordal graph, Clique, Planar graph, Girth, LI- 

ideal. 

 

 
1- Introduction 

 

In order to investigate a many-valued logical system whose propositional value is given in a 

lattice, in 1993 Y. Xu [14]first established the lattice implication algebra by combining lattice 

and implication algebra, and explored many useful structures. The ideal theory serves a vital 

function for the development of lattice implication algebras. Y. Xu, Y. B. Jun and E. H. Roh 

[8] introduced the notion of LI-ideals of lattice implication algebras. In particular, Y. B. Jun [7] 

introduced the concept of prime LI-ideals of lattice implication algebras and discussed some of 

their properties. Ke Yun Qin, Y. Xu and Y. B. Jun [11] introduced the notion of ultra LI-ideal 

in lattice implication algebras. Making connection between various algebraic structures and 

graph theory by assigning graphs to an algebraic structures and investigating the properties of 

one from the another is an exciting research methods in the last decade. For example, Beck in 

[4] associated a graph to a ring R is the zero-divisor graph. It is a simple graph with vertex set 

Z(R) − {0}, two vertices x and y are adjacent if and only if  xy = 0. Furthermore, Barati et 

al.[2] associated a simple graph ΓS(R) to a multiplicatively closed subset S  of  a commutative 

ring R with all elements of R as vertices, and two distinct vertices x and y are adjacent if and 

only if x + y ∈ S. Afkhami et al. [1] introduced the same graph structure on a lattice. They 

considered a lattice L and defined a graph ΓS(L) with all elements of L as vertices and two 

distinct vertices x, y ∈ L are adjacent if and only if x˅y ∈ S, where S is a subset of L which is 

closed under ˄ operation. Also, Jun and Lee in [9] defined the concept of associated graph of 

BCI/BCK-algebra and verified some properties of this graph. Zahiri and Borzooei in [17] 

associated a new graph to a BCI- algebra X represented by G(X), where this definition is based 
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on branches of  X. Tahmasbpour in [12, 13] studied chordality of the graph defined by Borzooei, 

Zahiri and introduced four new graphs of BCI/BCK-algebras constructed by equivalence classes 

determined by ideal I and dual ideal I˅. Furthermore, in [14, 15] introduced two new graphs of 

BCK- algebras based on fuzzy ideal μI and fuzzy dual ideal  

μI˅, two new graphs of lattice implication algebras based on fuzzy filter μF and fuzzy LI- ideal 

μA. This paper is divided into four parts. In Section 2, we recall some concepts of graph theory 

such as connected, planar, outerplanar, Eulerian, chromatic number, clique number, among 

others. Section 3, is an introduction to general theory of lattice implication algebras. We will 

first give the notions of lattice implication algebra, and investigate their elementary and 

fundamental properties and deal with a number of basic concepts, such as congruence, LI-ideal, 

among others. In Section 4, we introduce the associated graphs ΓA(L)  and  ΓA(L).  
 

 
2- Preliminaries of graph theory  

 

In this section, we put together some well-known concepts, most of which can be found in [4]. 

We begin by recalling some of the basic terminologies from the theory of graphs. Needless to 

mention that all graphs considered here are simple graphs, that is, without loops or multiple 

edges.  

Definition 2.1.([4])A graph 𝐺 = (𝑉, 𝐸) is connected if any of vertices 𝑥 and 𝑦 of 𝐺 are 

connected by path in 𝐺; otherwise, the graph is disconnected. A graph 𝐺 is called a complete 

graph on 𝑛 vertices if |𝑉(𝐺)| = 𝑛, 𝑥𝑦 ∈ 𝐸(𝐺), for any distinct element 𝑥, 𝑦 ∈ 𝑉(𝐺), denoted 

by 𝐾𝑛. For any 𝑇 ⊆ 𝑉(𝐺), the graph with vertex set 𝑉(𝐺) − 𝑇 and edge set 𝐸(𝐺) − 𝑇′ is 

denoted by 𝐺 − 𝑇, where 𝑇′ = {𝑥𝑦 ∈ 𝐸(𝐺); 𝑥 ∈ 𝑇, 𝑦 ∈ 𝐺}. A graph 𝐻 is called a subgraph of  

𝐺 if 𝑉(𝐻) ⊆ 𝑉(𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺). A graph 𝐺 is called a star graph if there exists a vertex 

𝑥 in 𝐺 such that every vertex  in 𝐺 connected to 𝑥 and other vertices in 𝐺 do not connect to each 

other. In graph 𝐺 with vertex set 𝑉(𝐺), the distance between two distinct vertices 𝑥 and 𝑦, 

denoted by 𝑑(𝑥, 𝑦), is the length of the shortest path connecting 𝑥 and 𝑦, if such a path exists; 

otherwise, we set 𝑑(𝑥, 𝑦) ≔ ∞. The diameter of a graph 𝐺 is 𝑑𝑖𝑎𝑚(𝐺) ≔ sup{𝑑(𝑥, 𝑦); 𝑥, 𝑦 ∈
𝑉(𝐺)}. Also, the girth of a graph 𝐺, denoted by 𝑔𝑟(𝐺), is the length of the shortest cycle in 𝐺 

if 𝐺 has a cycle; otherwise, we get 𝑔𝑟(𝐺) ≔ ∞. For a vertex 𝑥 in graph 𝐺, the neighborhood of 

𝑥 is the set of vertices adjacent to 𝑥, denoted by 𝑁𝐺(𝑥) and 𝑁𝐺[𝑥] =  𝑁𝐺(𝑥) ∪ {𝑥} and 

deg(𝑥) = |𝑁𝐺(𝑥)|. A graph 𝐺 is called regular of degree 𝑘 when every vertex has precisely 𝑘 

neighbors. A cubic graph is a graph in which all vertices have degree three. In other words, a 

cubic graph is a 3-regular graph. A graph 𝐺 is chordal if every cycle of length at least 4 has a 

chord, which is not part of the cycle but connects two vertices of the cycle. The greatest induced 

complete subgraph denotes a clique . If graph 𝐺 contain a clique with 𝑛 elements, and every 

clique has at most 𝑛 elements, we say that the clique number of 𝐺 is 𝑛 and write 𝜔(𝐺) = 𝑛. A 

graph 𝐺 is called 𝑘 −partite when its vertex set can be partitioned into 𝑘 −disjoint parts 

𝑋1, 𝑋2, … , 𝑋𝑘, so that for 𝑥, 𝑦 ∈  𝑋𝑖, 𝑖 = 1, … , 𝑘, we have 𝑥𝑦 ∉ 𝐸(𝐺), for 𝑥 ∈  𝑋𝑖 , 𝑦 ∈ 𝑋𝑗 , 𝑖 ≠

𝑗, 𝑖, 𝑗 = 1, … , 𝑘, we have 𝑥𝑦 ∈ 𝐸(𝐺). The complete bipartite (2-partite graph) with part sizes 𝑚 

and 𝑛 is denoted by 𝐾𝑚,𝑛. Moreover, for distinct vertices 𝑥 and 𝑦, we use the notation 𝑥 − 𝑦 to 

show that is 𝑥 connected to 𝑦. A subset 𝐴 of the vertices is called an independent set if the 

induced subgraph on 𝐴 has no edges. The maximum size of an independent set in a graph 𝐺 is 

called the independence number of 𝐺 and is denoted by 𝛼(𝐺). Let 𝑃 = (𝑉, ≤) be a poset. If 

𝑥 ≤ 𝑦 but 𝑥 ≠ 𝑦, then we write 𝑥 < 𝑦. If  𝑥 and 𝑦 are in 𝑉, the 𝑦 covers 𝑥 in 𝑃 if 𝑥 < 𝑦 and 

there is no 𝑧 in 𝑉 with 𝑥 < 𝑧 < 𝑦. Two sets { 𝑥 ∈ 𝑃; 𝑥 𝑐𝑜𝑣𝑒𝑟𝑠 0} and {𝑥 ∈ 𝑃; 1 𝑐𝑜𝑣𝑒𝑟𝑠 𝑥} 

denoted by 𝑎𝑡𝑜𝑚(𝑃) and 𝑐𝑜𝑎𝑡𝑜𝑚(𝑃), respectively. Let 𝐿 ⊆ 𝑃, we say 𝐿 is a chain if for all 

𝑥, 𝑦 ∈ 𝐿, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥. Chain 𝐿 is maximal if for all chain 𝐿′, 𝐿 ⊆ 𝐿′ implies that 𝐿 = 𝐿′. Two 

vertices of 𝐺 are orthogonal, denoted by 𝑥 ⊥ 𝑦, if 𝑥 and 𝑦 are adjacent in 𝐺 and there is no 

vertex 𝑧 ∈ 𝐺, which can be adjacent to both 𝑥 and 𝑦. A graph 𝐺 is called complemented if for 
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each vertex 𝑥 of 𝐺, there is a vertex 𝑦 of 𝐺, such that 𝑥 ⊥ 𝑦. A set 𝑆 is a dominating set if every 

vertex in 𝑉(𝐺) − 𝑆 is adjacent to at least one vertex in 𝑆. The dominating number 𝛾(𝐺) is the 

minimum cardinality of a dominating set in 𝐺. 

Definition 2.2. The lower, upper neighbors of an arbitrary element 𝑥 in 𝐿 are the sets 𝐵𝑙(𝑥) ≔
{𝑦 ∈ 𝐿; 𝑥 𝑐𝑜𝑣𝑒𝑟𝑠 𝑦} and 𝐵𝑢(𝑥) ≔ {𝑦 ∈ 𝐿; 𝑦 𝑐𝑜𝑣𝑒𝑟𝑠 𝑥}, respectively. Also, for every subset 𝐴 

and 𝐵 of 𝐿 we put 𝐿𝐴
𝐵 ≔ {𝐵}𝑙 − {𝐴}𝑙 and 𝑈𝐴

𝐵 ≔ {𝐵}𝑢 − {𝐴}𝑢. 

Definition 2.3.([4]) A walk or path graph has vertices 𝑣1, 𝑣2, … , 𝑣𝑛 and edges 𝑒1, 𝑒2, … , 𝑒𝑛−1 

such that edge 𝑒𝑘 joins vertices 𝑣𝑘 and 𝑣𝑘+1 , denoted by 𝑃𝑛. A subdivision of a graph is any 

graph that can be obtained from the original graph by replacing edges by paths. Graph 𝐺 is 

planar if it can be drawn on the plane without edges having to cross. Proving that a graph is 

planar amounts to redrawing the edges such that no edges will cross. The vertices may have to 

be moved around and the edges drawn in an indirect manner. Kuratowski’s theorem says that a 

finite graph is planar if and only if it does not contain a subdivision of 𝐾5 or 𝐾3,3. The chromatic 

number of any planar graph is less than or equal to 4. 

Example 2.4. Figure 1 shows that 3-cube and complete graph 𝐾4 are planar. 
 

 
Figure 1 

 

Definition 2.5.([4]) Let 𝐺 be a plane graph. The connected pieces of the plane which remain 

when the vertices and edges of 𝐺 are removed are called the region of 𝐺. A faces marks a region 

bounded by edges . An undirect graph is an outerplanar graph if it can be drawn in the plane 

without crossing such that all of the vertices belong to the unbounded face of drawing. There is 

a characterization for outerplanar graphs that says a graph is outerplanar if and only if it does 

not contain a subdivision of 𝐾4 or 𝐾2,3. 

Definition 2.6.([10]) Number 𝑔 is called the genus of the surface if it is homeomorphic to a 

sphere with 𝑔 handles or equivalently holes. Besides, genus 𝑔 of a graph 𝐺 is meant to be the 

smallest genus of all surfaces so that graph 𝐺 can be drawn on it without edge-crossing. The 

graphs of genus 0 are precisely the planar graphs since the genus of plane is zero. The notation 

𝛾(𝐺) stands for the genus of a graph 𝐺. 

Theorem 2.7. ([10]) For positive integers 𝑚 and 𝑛, we have: 

(i) 𝛾(𝐾𝑛) = ⌈
1

12
 (𝑛 − 3)(𝑛 − 4)⌉,  if 𝑛 ≥ 3. 

(ii) 𝛾(𝐾𝑚,𝑛) =  ⌈
1

4
(𝑚 − 2)(𝑛 − 2)⌉, if  𝑚, 𝑛 ≥ 2, where ⌈𝑥⌉ = min{ 𝑛 ∈ 𝑍|𝑥 ≤ 𝑛}. 

Definition 2.8. ([3]) Let 𝐺 be a graph with 𝑛 vertices that are assumed to be ordered from 𝑣1 to 

𝑣𝑛. An 𝑛 × 𝑛 matrix 𝐴, in which 𝑎𝑖𝑗 = 1 if there exists an edge from 𝑣𝑖 to 𝑣𝑗 , 𝑎𝑖𝑗 = 0; 

otherwise, is a adjacent matrix of 𝐺. The characteristic polynomial of matrix 𝐺 is also denoted 

by 𝜒(𝐺, 𝜆), which is det(𝜆𝐼 − 𝐺). 
Theorem 2.9. ([3]) Let 𝐺 be the complete graph 𝐾𝑛 with 𝑛 vertices. Therefore, 𝜒(𝐺, 𝜆) = (𝜆 −
𝑛 + 1)(𝜆 + 1)𝑛. 

Definition 2.10. ([4]) An Eulerian path is a path in a finite graph that visits every edge exactly 

once. Similarly, an Eulerian cycle is an Eulerian path which starts and ends on the same vertex. 

Euler’s theorem says that a connected graph 𝐺 is Eulerian if and only if all vertices of 𝐺 are of 

even degrees. 

Definition 2.11. ([6]) A lattice is an algebra 𝐿 = (𝐿, ˄, ˅) that satisfies the following conditions, 

for all 𝑎, 𝑏, 𝑐 ∈ 𝐿. 
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(i) 𝑎˄𝑎 = 𝑎, 𝑎˅𝑎 = 𝑎. 

(ii) 𝑎˄𝑏 = 𝑏˄𝑎, 𝑎˅𝑏 = 𝑏˅𝑎. 
(iii) (𝑎˄𝑏)˄𝑐 = 𝑎˄(𝑏˄𝑐), 𝑎˅(𝑏˅𝑐) = (𝑎˅𝑏)˅𝑐. 

(iv) 𝑎˅(𝑎˄𝑏) = 𝑎˄(𝑎˅𝑏). 
Definition 2.12. ([6]) Let 𝑃 = (𝑋, ≤𝑃) be a poset. Therefore, a comparability graph (com-

graph) of 𝑃 = (𝑋, ≤𝑃) is the graph 𝐶𝑜𝑚(𝑃) = (𝑋, 𝐸𝑐𝑜𝑚(𝑃)), where 𝑥𝑦 ∈ 𝐸𝑐𝑜𝑚(𝑃) if and only if 

𝑥 is comparable with 𝑦 in 𝑃. 

Definition 2.13. [6] A poset or lattice is (upper) semi-modular if, whenover two elements have 

a common lower cover, they have a common upper cover; (lower) semi-modularity is defined 

dually. Let 𝐺 = (𝑉, 𝐸) be a graph with a vertex set 𝑉 and an edge set 𝐸 ⊆ 𝑉 × 𝑉. It is 

𝑛 −connected if the restriction of 𝐺 to the vertices 𝑉 − 𝐶 is connected, whenever 𝐶 ⊆ 𝑉 has 

fewer than 𝑛 elements. A chain 𝐶 has rank 𝑑 if its cardinality of 𝐶 is 𝑑 + 1. A poset is ranked 

at 𝑑 if every maximal chain has the rank 𝑑. 
Theorem 2.14. ([6]) Let 𝐿 be a (finite or infinite) semi-modular lattice of rank 𝑑 that is not a 

chain. Therefore, the comparability graph of 𝐿 is (𝑑 + 1) −connected if and only if 𝐿 has no 

simplicial element, where 𝑧 ∈ 𝐿 is simplicial if the elements comparable to 𝑧 form a chain. 

 
3- Preliminaries of lattice implication algebras 

 

In this section, we introduce the concepts of ultra, obstinate, prime, maximal LI-ideal, the 

relationships between these LI-ideals are described.  

Definition 3.1. ([16]) Let (𝐿, ˅, ˄, 0, 𝐼) be a bounded lattice with an order reversing involution 

´, I and 0 the greatest and smallest elements of L, respectively. Then (𝐿, ˅, ˄, ′, →, 0, 𝐼) is called 

a lattice implication algebra if the following conditions hold for any 𝑥, 𝑦, 𝑧 ∈ 𝐿: 
(i) 𝑥 → (𝑦 → 𝑧) = 𝑦 → (𝑥 → 𝑧); 

(ii) 𝑥 → 𝑥 = 𝐼; 
(iii) 𝑥 → 𝑦 = 𝑦´ → 𝑥´; 
(iv) 𝑥 → 𝑦 = 𝑦 → 𝑥 = 𝐼 implies 𝑥 = 𝑦; 

(v) (𝑥 → 𝑦) → 𝑦 = (𝑦 → 𝑥) → 𝑥; 

(vi) (𝑥˅𝑦) → 𝑧 = (𝑥 → 𝑧)˄(𝑦 → 𝑧); 

(vii) (𝑥˄𝑦) → 𝑧 = (𝑥 → 𝑧)˅(𝑦 → 𝑧); 
From now on, we let 𝐿 be a lattice implication algebra. Subset 𝐴 of 𝐿 is called an LI-ideal of 𝐿 

if it satisfies the following conditions: 

(i) 0 ∈ 𝐴; 

(ii) (∀ 𝑥, 𝑦 ∈ 𝐿)((𝑥 → 𝑦)´𝜖𝐴, 𝑦𝜖𝐴 𝑖𝑚𝑝𝑙𝑦 𝑥𝜖𝐴); 

LI-ideal 𝐴 is called proper if 𝐴 ≠ 𝐿. 
LI-ideal 𝐴 of 𝐿 is a prime LI-ideal if and only if 𝑥˄𝑦 ∈ 𝐴 implies 𝑥 ∈ 𝐴 or 𝑦 ∈ 𝐴, for any 𝑥, 𝑦 ∈
𝐿. 
LI-ideal 𝐴 of 𝐿 is maximal, if it is proper and not a proper subset of any proper LI-ideal of 𝐿. 

Subset 𝐴 of 𝐿 is an obstinate LI-ideal if 𝑥 ∉ 𝐴 and 𝑦 ∉ 𝐴 imply (𝑥 → 𝑦)′ ∈ 𝐴 and (𝑦 → 𝑥)′ ∈
𝐴, for any 𝑥, 𝑦 ∈ 𝐿. 

Subset 𝐴 of 𝐿 is an ultra LI-ideal if it satisfies: 

𝑥 ∈ 𝐴 ⇔ 𝑥′ ∉ 𝐴 

Theorem 3.2. ([16]) Let 𝐴 be an LI-ideal of 𝐿. If (𝑥 → 𝑦)´𝜖 𝐴, (𝑦 → 𝑧)´𝜖 𝐴. Then (𝑥 → 𝑧)´ ∈ 𝐴. 
Theorem 3.3. ([16]) Let 𝐴 be a proper LI-ideal of 𝐿. 𝐴 is a prime LI-ideal if and only if 

(𝑥 → 𝑦)′ ∈ 𝐴 or (𝑦 → 𝑥)′ ∈ 𝐴. 

Theorem 3.4. ([16]) Let 𝐴 be a proper LI-ideal of 𝐿. Then the following assertions are 

equivalent: 

(i) 𝐴 is a proper ultra LI-ideal. 

(ii) 𝐴 is a proper prime LI-ideal. 
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(iii) 𝐴 is an obstinate LI-ideal. 

Definition 3.5. ([16]) Let 𝐴 be an LI-ideal of  𝐿 and define relation ≡𝐴 on 𝐿 as follows: 

                                               𝑥 ≡𝐴 𝑦 ⇔ (𝑥 → 𝑦)´ ∈ 𝐴, (𝑦 → 𝑥)´ ∈ 𝐴. 

It is easily verified that ≡𝐴is a congruence relation. Let 
𝐿

𝐴
 be a set of congruence classes of ≡𝐴 

. Therefore 
𝐿

𝐴
≔ {[𝑥]𝐴|𝑥𝜖 𝐿}, where [𝑥]𝐴 ≔ {𝑦 ∈ 𝐿| 𝑥 ≡𝐴  𝑦}. Therefore, (

𝐿

𝐴
, →, [0]𝐴) is a 

lattice implication algebra, [𝑥]𝐴 → [𝑦]𝐴 = [𝑥 → 𝑦]𝐴. 
 

4- Graphs of lattice implication algebras based on LI- ideal 

 

In this section, we characterize LI-ideal based graphs 𝛤𝐴(𝐿) and 𝛤𝐴(𝐿), 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
 

Definition 4.1. Let 𝐴 be an LI-ideal of 𝐿. Then we have: 

(i) 𝛤𝐴(𝐿) = (𝐿, 𝐸𝐴) is a graph with vertices 𝐿 and edges 𝐸𝐴, where 𝑥𝑦𝜖𝐸𝐴 if and only if 

(𝑥 → 𝑦)´𝜖 𝐴 and (𝑦 → 𝑥)´ 𝜖 𝐴, for any 𝑥, 𝑦 ∈ 𝐿. 
(ii) 𝛤𝐴(𝐿) = (𝐿, 𝐸𝐴) is a graph with vertices 𝐿 and edges 𝐸𝐴, where 𝑥𝑦𝜖𝐸𝐴 if and only if 

(𝑥 → 𝑦)´𝜖 𝐴 or (𝑦 → 𝑥)´ 𝜖 𝐴, for any 𝑥, 𝑦 ∈ 𝐿. 
Example 4.2. Let 𝐿 = {0, 𝑎, 𝑏, 𝑐, 𝑑, 𝐼} and the operation → is given by the table 1: 
 

Table1- Implication operator 

 
Therefore, (𝐿, ˅, ˄, ´, →) is a lattice implication algebra. It is easy to verify that 𝐴 = {0, 𝑐} is an 

LI-ideal of 𝐿. Also, we can see 𝛤𝐴(𝐿)  is an empty graph,  𝐸(𝛤𝐴(𝐿)) =
{0𝑎, 0𝑏, 0𝑐, 0𝑑, 0𝐼, 𝑎𝑑, 𝑏𝑐, 𝑎𝐼, 𝑏𝐼, 𝑐𝐼, 𝑑𝐼}. 
Theorem 4.3. Let 𝐴 be an LI-ideal of 𝐿. Then 𝑑𝑖𝑎𝑚(𝛤𝐴(𝐿)) ≤ 2, 𝑔𝑟(𝛤𝐴(𝐿)) = 3. 
Proof. It is known that vertices 0, 𝐼 connects to any element  in L. Since (0 → 𝑥)´ =

0 𝜖 𝐴 𝑎𝑛𝑑 (𝑥 → 𝐼)´ = 0 𝜖 𝐴, 𝑑𝑖𝑎𝑚(𝛤𝐴(𝐿)) ≤ 2, 𝑔𝑟(𝛤𝐴(𝐿)) = 3. 

Theorem 4.4. Let 𝐴 be an LI-ideal of 𝐿. Then  

(i) 𝛤𝐴(𝐿) is regular if and only if it is complete. 

(ii) If 𝛤𝐴(𝐿) is regular, then it is a complete graph on 𝐴. 

(iii) If 𝐿 be a chain, 𝛤𝐴(𝐿) is complete. 

Proof. (i)(⇒) Let 𝛤𝐴(𝐿) be a regular graph. Since (0 → 𝑥)´ = 0 𝜖 𝐴 and (𝑥 → 𝐼)´ = 0 𝜖 𝐴 for 

any 𝑥 ∈ 𝐿, deg(0) = deg(𝐼) = |𝐿| − 1. Now, since 𝛤𝐴(𝐿) is regular for any 𝑥 ∈ 𝐿, deg(𝑥) =
deg(0) = deg(𝐼) = |𝐿| − 1 and so on for any 𝑥 ∈ 𝐿, deg(𝑥) = |𝐿| − 1. This means that 

𝛤𝐴(𝐿)  is a complete graph. 

(⇐) It is clear that any complete graph is regular. 

(ii) Let 𝛤𝐴(𝐿) be a regular graph. Since (0 → 𝑥)′ = 0 ∈ 𝐴 and (𝑥 → 0)′ = 𝑥 ∈ 𝐴 for any 𝑥 ∈
𝐴, deg(0) = |𝐴| − 1. Now, since 𝛤𝐴(𝐿) is regular for any 𝑥 ∈ 𝐴, deg(𝑥) = deg(0) = |𝐴| − 1. 
Thus, 𝛤𝐴(𝐿) is complete on LI-ideal 𝐴. 

(iii) If 𝐿 is a chain, then for any 𝑥, 𝑦 ∈ 𝐿, 𝑥 ≤ 𝑦 𝑜𝑟 𝑦 ≤ 𝑥 and so (𝑥 → 𝑦)′ = 0 ∈
𝐴 𝑜𝑟 (𝑦 → 𝑥)′ = 0 ∈ 𝐴. Therefore, deg(𝑥) = |𝐿| − 1, for any 𝑥 ∈ 𝐿  and 𝛤𝐴(𝐿) is complete. 

Theorem 4.5. Let 𝐴 be an ultra LI-ideal of 𝐿. Then, deg(𝐼) = |𝐿| − |𝐴| in 𝛤𝐴(𝐿). 
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Proof. It is known that (𝑥 → 𝐼)′ = 0 ∈ 𝐴, since A is an ultra LI-ideal (𝐼 → 𝑥)′ ∈ 𝐴 for all 𝑥 ∉
𝐴. Therefore, by Definition 4.1 of 𝛤𝐴(𝐿), deg(𝐼) = |𝐿| − |𝐴|. 
Theorem 4.6. Let 𝐴 be an LI-ideal of 𝐿. Then, 0 and 𝐼 are not orthogonal in the graph 𝛤𝐴(𝐿) and 

𝛤𝐴(𝐿) is not complemented. 

Proof. According to Theorem 4.3 every vertex in the graph 𝛤𝐴(𝐿) connected to both 0 and 𝐼. 

Thus, 0 and I are not orthogonal. Moreover, there are not vertices x and y in 𝛤𝐴(𝐿)  such that 𝑥 

and 𝑦 are orthogonal. Therefore, 𝛤𝐴(𝐿) is not complemented. 

Theorem 4.7. Let 𝐴 be an LI-ideal of 𝐿. Then 𝑆1 = {0} and 𝑆2 = {𝐼} are two dominating sets in 

graph 𝛤𝐴(𝐿). Therefore, 𝛾(𝛤𝐴(𝐿)) = 1. 
Proof. Straightforward by Definition 2.1 of dominating set and by Theorem 4.5. 

Theorem 4.8. Let 𝐴 = {0} be an LI-ideal of 𝐿. Then 𝐶𝑜𝑚(𝐿) = 𝛤𝐴(𝐿), where 𝐶𝑜𝑚(𝐿) is a 

comparability of 𝐿. 

Proof. Let 𝑥, 𝑦 ∈ 𝐿, 𝑥𝑦 ∈ 𝐸 (𝛤{0}(𝐿)). Therefore, by Definition 4.1 of graph 𝛤𝐴(𝐿), (𝑥 → 𝑦)′ =

0 or (𝑦 → 𝑥)′ = 0 Thus, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥, and thus, 𝑥𝑦 ∈ 𝐸(𝐶𝑜𝑚(𝐿)). The converse is clear. 

Theorem 4.9. Let 𝐿 be semimodular of rank 𝑑 that is not a chain. Then 𝛤{0}(𝐿) is (𝑑 +

1) −connected if and only if 𝐿 has no simplicial element , where 𝑧 ∈ 𝐿 is simplicial if the 

elements comparable to 𝑧 form a chain. 

Proof. By Theorems 2.14 and 4.8. 

Proposition 4.10. Let 𝐴 be an LI-ideal of 𝐿. Then 𝜔(𝛤𝐴(𝐿)) ≥ max{|𝐵|; 𝐵 𝑖𝑠  𝑎 𝑐ℎ𝑎𝑖𝑛 𝑖𝑛 𝐿}. 

Proof. Let 𝐵 be a chain in 𝐿. Then for all 𝑥, 𝑦 ∈ 𝐵, 𝑥 ≤ 𝑦 𝑜𝑟 𝑦 ≤ 𝑥. In other words, (𝑥 → 𝑦)′ =
0 ∈ 𝐴 or (𝑦 → 𝑥)′ = 0 ∈ 𝐴. 

 Thus, 𝑥𝑦 ∈ 𝐸(𝛤𝐴(𝐿)) by Definition 4.1 of graph 𝛤𝐴(𝐿), since 𝜔(𝛤𝐴(𝐿)) is the length of the 

greatest induced complete subgraph in the graph 𝛤𝐴(𝐿). Therefore, 𝜔(𝛤𝐴(𝐿)) ≥

max{ |𝐵|; 𝐵 𝑖𝑠 𝑎 𝑐ℎ𝑎𝑖𝑛 𝑖𝑛 𝐿}. 
Theorem 4.11. Let 𝐴 be an LI-ideal of 𝐿. Then 𝛤𝐴(𝐿) is an Euler graph if and only if |L| is odd. 

Proof. Theorem 4.3 says that 𝛤𝐴(𝐿) is connected. So, by Euler’s theorem, 𝛤𝐴(𝐿) is an Euler 

graph if and only if the degree of any vertex is even. Therefore, if 𝛤𝐴(𝐿) is an Euler graph, then 

𝑑𝑒𝑔(0) is even. On the other hand, by Theorem 4.2, deg(0) = |L|-1. Therefore, if 𝛤𝐴(𝐿) is an 

Euler graph, then | 𝐿| is odd. Hence, this is proved. 

Theorem 4.12. If 𝐼 ∈ 𝐴, then the following statements hold: 

(i) 𝛤𝐴(𝐿) is planar if and only if |𝐿| ≤ 4. 

(ii) 𝛤𝐴(𝐿) is outer-planar if and only if |𝐿| ≤ 3. 

(iii) 𝛤𝐴(𝐿) is toroidal if and only if  |𝐿| ≤ 7. 

Proof. (i) If  𝐼 ∈ 𝐴, then 𝐴 = 𝐿. Hence, 𝛤𝐴(𝐿) is a complete graph, if |𝐿| > 4 then 𝛤𝐴(𝐿) has 

an induced sub-graph isomorphic to 𝐾5. So, by Kuratowski’s theorem , 𝛤𝐴(𝐿)is not planar. 

(ii) If  𝐼 ∈ 𝐴, then 𝐴 = 𝐿. Hence, 𝛤𝐴(𝐿) is a complete graph, if |𝐿| > 3 then 𝛤 𝐴(𝐿) has an 

induced sub-graph isomorphic to 𝐾4. So, by Definition 2.5 , 𝛤𝐴(𝐿)is not outer-planar. 

(iii) If  𝐼 ∈ 𝐴, then 𝐴 = 𝐿. Hence, 𝛤𝐴(𝐿) is a complete graph, if |𝐿| > 7 then 𝛤 𝐴(𝐿) has an 

induced sub-graph isomorphic to 𝐾8. So, by Theorem 2.7 , 𝛤𝐴(𝐿)is not toroidal. 

Theorem 4.13. Let 𝐴 be an LI-ideal of 𝐿. Then there is not 𝑚, 𝑛 ∈ 𝑁 in such away that 𝛤𝐴(𝐿) 

be isomorphic to 𝐾𝑚,𝑛. 

Proof. Let there be 𝑚, 𝑛 ∈ 𝑁 so that 𝛤𝐴(𝐿) is isomorphic to 𝐾𝑚,𝑛.  Then there are the sets 𝐴 =

{𝑥1, … , 𝑥𝑚} and 𝐵 = {𝑦1, … , 𝑦𝑛} in such away that (𝑥𝑖 → 𝑦𝑗)
′

∈ 𝐴 and (𝑦𝑗 → 𝑥𝑖)′ ∈ 𝐴 for all 

𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛. By transitive property →, (𝑥𝑖 → 𝑥𝑘)′𝜖𝐴 and  (𝑦𝑗 → 𝑦𝑙)
′

∈ 𝐴 for all 

𝑖, 𝑘 ∈ {1, … , 𝑚}, 𝑗, 𝑙 ∈ {1, … , 𝑛}. This is a contradiction to 𝐾𝑚,𝑛 being a complete bipartite 

graph. Thus, this is proved. 
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Proposition 4.14. Let 𝐴 ={0, a} be an LI-ideal of 𝐿, where 𝑎 ∈ 𝑎𝑡𝑜𝑚(𝐿), 𝐵 = {𝑥 ∈
𝐿|𝑥 𝑐𝑜𝑣𝑒𝑟𝑠 𝑎}. Then we have: 

(i) If |𝐵| ≥ 3, then 𝛤𝐴(𝐿) is not planar. 

(ii) If |𝐵| ≥ 2, then 𝛤𝐴(𝐿) is not outer-planar. 

(iii) If |𝐵| ≥ 7, then 𝛤𝐴(𝐿) is not toroidal. 

Proof. (i) Since |𝐵| ≥ 3, the subset 𝐵′ = {𝑥1, 𝑥2, 𝑥3} of the set B can be chosen. It is clear that 

for all 𝑖 = 1, 2, 3, (0 → 𝑥𝑖)
′ = 0, (𝑎 → 𝑥𝑖)′ = 0 𝑎𝑛𝑑 (𝑥𝑖 → 𝐼)′ = 0. So, the graph of 𝛤𝐴(𝐿) on 

𝐵′ ∪ {0, 𝑎, 𝐼} has a sub-graph isomorphic to 𝐾3,3. Thus by Kuratowski’s theorem, 𝛤𝐴(𝐿) is not 

planar. 

(ii) Since |𝐵| ≥ 2, the subset 𝐵′ = {𝑥1, 𝑥2} of the set B can be chosen. It is clear that for all 𝑖 =
1, 2, (0 → 𝑥𝑖)′ = 0, (𝑎 → 𝑥𝑖)

′ = 0 𝑎𝑛𝑑 (𝑥𝑖 → 𝐼)′ = 0. So, the graph of  𝛤𝐴(𝐿) on 𝐵′ ∪ {0, 𝑎, 𝐼} 

has a sub-graph isomorphic to 𝐾2,3. Thus by Definition 2.5, 𝛤𝐴(𝐿) is not outer-planar. 

(iii) Since |𝐵| ≥ 7, the subset 𝐵′ = {𝑥1, … , 𝑥7} of the set B can be chosen. It is clear that for all 

𝑖 = 1, … , 7, (0 → 𝑥𝑖)′ = 0, (𝑎 → 𝑥𝑖)
′ = 0 𝑎𝑛𝑑 (𝑥𝑖 → 𝐼)′ = 0. So, the graph of 𝛤𝐴(𝐿) on 𝐵′ ∪

{0, 𝑎, 𝐼} has a sub-graph isomorphic to 𝐾3,7. Thus by theorem 2.7, 𝛤𝐴(𝐿) is not toroidal. 

Theorem 4.15. Let 𝐴 be an LI-ideal of 𝐿. Then  𝐴 = {0} if and only if graph 𝛤𝐴(𝐿) is empty 

that is 𝐸𝐴 = ∅. 

Proof. Let 𝑥𝑦 ∈ 𝐸(𝛤𝐴(𝐿)), 𝑥, 𝑦 ∈ 𝐿. Then (𝑥 → 𝑦)′ ∈ 𝐴 = {0} and (𝑦 → 𝑥)′  ∈ 𝐴 = {0}. So, 

𝑥 = 𝑦. Therefore, 𝛤𝐴(𝐿) is an empty graph. Conversely, let 𝛤𝐴(𝐿) be an empty graph. 

Therefore, if for all 𝑥, 𝑦 ∈ 𝐿, 𝑥𝑦 ∈ 𝐸(𝛤𝐴(𝐿)), then 𝑥 = 𝑦. In other words if for all 𝑥, 𝑦 ∈

𝐿, (𝑥 → 𝑦)′ ∈ 𝐴 and (𝑦 → 𝑥)′ ∈ 𝐴, then 𝑥 = 𝑦. Thus, (𝑥 → 𝑦)′ = (𝑥 → 𝑥)′ = 0 ∈ 𝐴. Thus, 

A={0}, is proved. 

Lemma 4.16. We have for any 𝑥, 𝑦 ∈ 𝐿, (𝑦 → 𝑥)′ = 𝑦 if and only if 𝑥˄𝑦 = 0. 
Theorem 4.17. Let 𝐴 = {0, 𝑎} be an LI-ideal of 𝐿 and 𝐵 = {𝑥 ∈ 𝐿|𝑥 𝑐𝑜𝑣𝑒𝑟𝑠 𝑎}, where 𝑎 ∈
𝑎𝑡𝑜𝑚 (𝐿). If 𝛤𝐴(𝐿) is planar, then one of the following statements holds: 

(i) |𝐵| = 1. 

(ii) | 𝐵|=2, and |𝑈𝑥
𝑦

| ≤ 2 for all 𝑥, 𝑦 ∈ 𝐵, and if  |𝑈𝑥
𝑦

| = 2, then |𝑈𝑦
𝑥| = 1, and if |𝑈𝑦

𝑥| = 2, then 

|𝑈𝑥
𝑦

| = 1. 

Proof. Since 𝛤𝐴(𝐿) is planar by Proposition 4.14, |𝐵| ≤ 2. Suppose that |𝐵| ≠ 1. Thus, |𝐵| =

2. Set 𝐵 ≔ {𝑥, 𝑦}. If  |𝑈𝑦
𝑥| ≥ 3 or |𝑈𝑥

𝑦
| ≥ 3, then 𝛤𝐴(𝐿) has a sub-graph isomorphic to 𝐾3,3. 

Without loss of generality, suppose |𝑈𝑦
𝑥| ≥ 3. Thus, there exist {𝑎1, 𝑎2, 𝑎3} ∈ 𝑈𝑦

𝑥 so denote 

𝑉1 = {0, 𝑎, 𝑦} and 𝑉2 = {𝑥, 𝑎1, 𝑎2}, then we have (0 → 𝑥)′ = 0, (0 → 𝑎𝑖)′ = 0, (𝑎 → 𝑎𝑖)′ = 0, 

and (𝑎 → 𝑥)′ = 0, 𝑖 = 1,2, since 𝑥˄𝑦, 𝑎1˄𝑦, 𝑎2˄𝑦 = 𝑎 ≠ 0, since (𝑦 → 𝑥)′, (𝑦 → 𝑎1)′, and 

(𝑦 → 𝑎2)′ ≤ 𝑦, by Lemma 4.16, we have (𝑦 → 𝑥) = 𝑎, (𝑦 → 𝑎1) = 𝑎, (𝑦 → 𝑎2) = 𝑎 and so 

𝛤𝐴(𝐿) is not planar. Which is impossible. Hence, |𝑈𝑦
𝑥| ≤ 2 and |𝑈𝑥

𝑦
| ≤ 2. Now, suppose that 

|𝑈𝑥
𝑦

| = 2 and |𝑈𝑦
𝑥| = 2. Set 𝑉1 = 𝑈𝑥

𝑦
∪ {𝑎} and 𝑉2 = 𝑈𝑦

𝑥 ∪ {0}. It is easy to see that 𝛤𝐴(𝐿) has 

a sub-graph isomorphic to 𝐾3,3 with  parts 𝑉1 and 𝑉2 , which is impossible. So, if |𝑈𝑦
𝑥| = 2, then 

|𝑈𝑥
𝑦

| = 1. Also, if |𝑈𝑦
𝑥| = 2, then |𝑈𝑥

𝑦
| = 1. 

Theorem 4.18. Let 𝐴 be an LI-ideal of 𝐿, 𝐵 = {𝑥, 𝑦 ∈ 𝐿; (𝑥 → 𝑦)′ ∉ 𝐴, (𝑦 → 𝑥)′ ∉ 𝐴}. 
Therefore, we have the following statements: 

(i) 𝛤𝐴(𝐿 − 𝐵) is planar if and only if 𝛤𝐴(𝐿) is planar. 

(ii) 𝛤𝐴(𝐿 − 𝐵) is outer- planar if and only if 𝛤𝐴(𝐿) is outer-planar. 

(iii) 𝛤𝐴(𝐿 − 𝐵) is toroidal if and only if 𝛤𝐴(𝐿) is toroidal. 

Proof. Straightforward. 

Theorem 4.19. Let 𝐴 be an LI-ideal of 𝐿. Then we have: 

(i) 𝛤𝐴([𝑥]𝐴) is a complete graph, for any 𝑥 ∈ 𝐿 

(ii) 𝛤𝐴(𝐿) = ⋃ 𝛤𝐴([𝑥]𝐴)𝑥∈𝐿 , 
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(iii) 𝛤𝐴(𝐿) is a graph with | 
 𝐿

𝐴
| 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 

(iv) 𝛤𝐴(𝐿) is a planar graph if and only if |[𝑥]𝐴| ≤ 4, for all 𝑥 ∈ 𝐿, 
(v) 𝛤𝐴(𝐿) is an outerplanar graph if and only if |[𝑥]𝐴| ≤ 3, for all 𝑥 ∈ 𝐿, 
(vi) 𝛤𝐴(𝐿) is a toroidal graph if and only if |[𝑥]𝐴| ≤ 7, for all 𝑥 ∈ 𝐿, 

(vii) 𝜔(𝛤𝐴(𝐿)) = max{|[𝑥]𝐴|; 𝑥 ∈ 𝐿}. 
Proof. (i) Let 𝑢, 𝑣 ∈  [𝑥]𝐴 then by Definition 3.5 of ≡𝐴   , (𝑢 → 𝑥)′ ∈ 𝐴, (𝑥 → 𝑢)′ ∈
𝐴, (𝑣 → 𝑥)′ ∈ 𝐴, 𝑎𝑛𝑑 (𝑥 → 𝑣)′ ∈ 𝐴 so (𝑢 → 𝑣)′ ∈ 𝐴 and (𝑣 → 𝑢)′ ∈ 𝐴 since Theorem 3.2 says 

operation → has transitive property, thus by Definition 4.1 of graph 𝛤𝐴(𝐿), 𝑢𝑣 ∈ 𝐸(𝛤𝐴([𝑥]𝐴)) 

then 𝛤𝐴([𝑥]𝐴) is a complete graph. 

(ii) Since 𝐿 = ⋃ [𝑥]𝐴𝑥∈𝐿  then 𝑉(𝛤𝐴(𝐿)) = 𝑉(⋃ 𝛤𝐴(([𝑥]𝐴))𝑥 ∈𝐿 ). Clearly, 

𝐸(⋃ 𝛤𝐴(([𝑥]𝐴))𝑥 ∈𝐿 )  ⊆ 𝐸(𝛤𝐴([𝑥]𝐴)). Now, let 𝑥𝑦 ∈ 𝐸(𝛤𝐴(𝐿)). Then, (𝑥 → 𝑦)′ ∈ 𝐴 and 

(𝑦 → 𝑥)′ ∈ 𝐴, and so 𝑥𝑦 ∈  𝛤𝐴([𝑥]𝐴). Hence, 𝐸(⋃ 𝛤𝐴([𝑥]𝐴)𝑥 ∈𝐿 ) = 𝐸(𝛤𝐴(𝐿)). 

(iii) We want to show that there is not any path between elements of [𝑥]𝐴 and [𝑦]𝐴 for all 

distinct elements 𝑥, 𝑦 ∈ 𝐿. Let 𝑥, 𝑦 be distinct elements of L, 𝑎 ∈  [𝑥]𝐴 and 𝑏 ∈  [𝑦]𝐴. If there 

is a path 𝑎, 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏 which link 𝑎 to 𝑏, then (𝑎 → 𝑎1)′ ∈ 𝐴 and so by Definition 3.5 of 

≡𝐴 we have 𝑎1 ∈  [𝑎]𝐴 = [𝑥]𝐴. By a similar way, we have 𝑎2, … , 𝑎𝑛, 𝑏 ∈ [𝑥]𝐴 so 𝑏 ∈  [𝑥]𝐴 ∩
 [𝑦]𝐴 which is contrary to that [𝑥]𝐴 ∩ [𝑦]𝐴 = ∅. 

(iv) We know 𝛤𝐴([𝑥]𝐴) is a complete graph by (i), if |[𝑥]𝐴| > 4 then 𝛤𝐴(𝐿) has induced 

subgraph isomorphic to 𝐾5 , so by Kuratowski’s Theorem 𝛤𝐴([𝑥]𝐴) is not planar. 

(v) We know 𝛤𝐴([𝑥]𝐴) is a complete graph by (i), if |[𝑥]𝐴| > 3 then 𝛤𝐴(𝐿) has induced subgraph 

isomorphic to 𝐾4 , so by Definition 2.5, 𝛤𝐴([𝑥]𝐴) is not outerplanar. 

(vi) We know 𝛤𝐴([𝑥]𝐴) is a complete graph by (i), if |[𝑥]𝐴| > 7 then 𝛤𝐴(𝐿) has induced 

subgraph isomorphic to 𝐾5 , so by Theorem 2.7, 𝛤𝐴([𝑥]𝐴) is not toroidal. 

(vii) We know by (i) and (ii), 𝛤𝐴([𝑥]𝐴) is a complete graph, 𝛤𝐴(𝐿) =  ⋃ 𝛤𝐴([𝑥]𝐴), since 

𝜔(𝛤𝐴(𝐿)) is length of greatest induced complete subgraph in the 𝛤𝐴(𝐿), we have 𝜔(𝛤𝐴(𝐿)) =
max {|[𝑥]𝐴|; 𝑥 ∈ 𝐿}. 

Theorem 4.20. Let 𝐴 be an LI-ideal of 𝐿. If 𝑡 = |
𝐿

𝐴
| , 𝐿 = ⋃ [𝑥𝑖]𝐴𝑖=1,… ,𝑡 . Then 𝛼(𝛤𝐴(𝐿)) ≥ 𝑡. 

Proof. Let 𝑧1 ∈  [𝑥𝑖]𝐴, 𝑧2 ∈  [𝑥𝑗]𝐴, 𝑖, 𝑗 = 1, … , 𝑡. By proof of Theorem 4.19, we have 𝑧1𝑧2 ∉

𝐸(𝛤𝐴(𝐿)). Then by Definition 2.1 of an independent set that is a maximum size of the vertex 

set in such away that don’t connect to each other, Theorem 4.19 (ii), we have 𝛼(𝛤 𝐴(𝐿)) ≥ 𝑡. 

Theorem 4.21. Let 𝐴 be an LI-ideal of 𝐿. Then 𝛤𝐴([𝑥]𝐴) is an Euler graph if and only if |[𝑥]𝐴| 
is odd. 

Proof. By Theorem 4.19, we know 𝛤𝐴([𝑥]𝐴) is a complete graph. If |[𝑥]𝐴| is dd then degree 

every vertex of 𝛤𝐴([𝑥]𝐴) is even, so by Theorem Euler that says a connected graph is an Euler 

graph if and only if degree every vertex is even, we gain  𝛤𝐴([𝑥]𝐴) is an Euler graph. 

Theorem 4.22. Let 𝐿 be finite, 𝐴 be an LI-ideal of 𝐿. Then we have: 

𝜒(𝛤𝐴(𝐿), 𝜆) = ∏ 𝜒(𝛤𝐴([𝑎𝑡]𝐴), 𝜆)

𝑎𝑡∈𝑋

= ∏ (𝜆 − 𝑟𝑡 + 1)(𝜆 + 1)𝑟𝑡

𝑡=1,…,𝑚

 

Proof. Let 𝑚 ∈ 𝑁, 
𝐿

𝐴
= {[𝑎1]𝐴, … , [𝑎𝑚]𝐴}, [𝑎𝑡]𝐴 = {𝑥1,𝑡, … , 𝑥𝑟𝑡,𝑡} and 𝐴𝑡 = [𝑏𝑖,𝑗] be the 

adjacency matrix of 𝛤𝐴([𝑎𝑡]𝐴), for all 𝑡 ∈ {1, 2, … , 𝑚}. Then 

𝑥1,1, 𝑥2,1, … , 𝑥𝑟1,1, 𝑥1,2, 𝑥2,2, … , 𝑥𝑟2,2, … , 𝑥1,𝑚, 𝑥2,𝑚, … , 𝑥𝑟𝑚,𝑚}. Since [𝑎𝑖]𝐴 ∩ [𝑎𝑗]𝐴 = ∅, for all 

distinct 𝑖, 𝑗 ∈ {1, 2, … , 𝑚}, then by Theorem 4.19 (ii), the adjacency matrix of 𝛤𝐴(𝐿) is of the 

form 
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Where 𝐴𝑡 is isomorphic to adjacent matrix of a complete graph 𝐾𝑟𝑡

 on 𝑟𝑡 vertices, for all 𝑡 ∈

{1, 2, … , 𝑚}. By the properties of the determinate, we have, 

 

𝜒(𝛤𝐴(𝐿), 𝜆) = det(𝜆𝐼 − 𝐴) = det(𝜆𝐼1 − 𝐴1) × det(𝜆𝐼2 − 𝐴2) × … × det(𝜆𝐼𝑚 − 𝐴𝑚) = ∏ 𝜒(𝛤𝐴([𝑎𝑡]𝐴), 𝜆)

𝑎𝑡∈𝑋

 

 

, where 𝐼𝑡 is a 𝑟𝑡 × 𝑟𝑡 identity matrix, for all 𝑡 ∈ {1,2, … , 𝑚}. On the other hand by Theorem 

4.19(i), we have 

𝜒(𝛤𝐴(𝐿), 𝜆) = ∏ (𝜆 − 𝑟𝑡 + 1)(𝜆 + 1)𝑟𝑡

𝑡=1,…,𝑚

 

Theorem 4.23. Let 𝐿 be finite and t be the number of element 𝑎 ∈ 𝐿 such that |[𝑎]𝐴|=1. Then, 

we have 

(i) 𝜒(𝛤𝐴(𝐿), 𝜆) = 𝜆𝑡 × 𝑓(𝜆), for some polynomial 𝑓(𝜆). 
(ii) 𝐴 = {0} if and only if 𝜒(𝛤𝐴(𝐿), 𝜆) =  𝜆𝑛, for some 𝑛 ∈ 𝑁. 
Proof. Let |𝐿| = 𝑛 and {𝑎1, … , 𝑎𝑡} be the set of all elements of 𝐿 such that |[𝑎𝑖]𝐴| = 1, for all 

𝑖 ∈ {1,2, … , 𝑡}. Then by using the proof of Theorem 4.19, the adjacent matrix of 𝛤𝐴(𝐿) is of the 

form 
 

 
 

Where 𝐵 is an (𝑛 − 𝑡 × 𝑛 − 𝑡) matrix. Hence, by properties of the determinate, we have 

𝜒 (𝛤𝐴(𝐿), 𝜆) = det(𝜆𝐼𝑡)  × 𝑑𝑒𝑡(𝜆𝐼𝑛−𝑡 − 𝐵) = 𝜆𝑡 × 𝑑𝑒𝑡(𝜆𝐼𝑛−𝑡 − 𝐵). Let 𝑓(𝜆) = 𝑑𝑒𝑡(𝜆𝐼𝑛−𝑡 −
𝐵), then 𝜒(𝛤𝐴(𝐿), 𝜆) = 𝜆𝑡 × 𝑓(𝜆). 

(ii) Since 𝐴 = {0}, then |[𝑎]𝐴| = 1, for all 𝑎 ∈ 𝐿. Therfore, by (i), 𝜒(𝛤𝐴(𝐿), 𝜆) = 𝜆𝑛, where 

|𝐿| = 𝑛. Conversely, let 𝜒(𝛤𝐴(𝐿), 𝜆) = 𝜆𝑛, for some 𝑛 ∈ 𝑁. Then 𝛤𝐴(𝐿) is an empty graph. 

Therefore by Theorem 4.15, 𝐴 = {0}. 
Theorem 4.24. Let 𝐴 be an LI-ideal of 𝐿. Then 𝛤𝐴(𝐿) is chordal. 

Proof. Let 𝑥0, 𝑥1, … , 𝑥𝑛 be a cycle of length 𝑛 ≥ 4. Then we have (𝑥𝑖 → 𝑥𝑖+1)′ ∈ 𝐴 and 
(𝑥𝑖+1 → 𝑥𝑖+2)′ ∈ 𝐴, for all 𝑖 = 0, … , 𝑛 − 2. 
By transitive property of → , (𝑥𝑖 → 𝑥𝑖+2)′ ∈ 𝐴 for all 𝑖 = 0, … , 𝑛 − 2. Hence, 𝛤𝐴(𝐿) is chordal, 

complete proof. 

Example 4.25. Consider 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 𝐿, such that 𝑥1  ≤  𝑥2, 𝑥1 ≤ 𝑥3, 𝑥4 ≤ 𝑥2 and 𝑥4 ≤  𝑥3, 

𝑥1 to 𝑥4 and 𝑥2 to 𝑥3 are not comparable. Therefore, 𝛤𝐴(𝐿) has a cycle isomorphic to 𝐶4 on the 

vertex set {𝑥1, 𝑥2, 𝑥3, 𝑥4}. Since (𝑥1 → 𝑥2)′ = (𝑥1 → 𝑥3)′ = (𝑥4 → 𝑥2)′ = (𝑥4 → 𝑥3)′ = 0 ∈

𝐴, by Definition 4.1 of graph 𝛤{0}(𝐿), 𝑥1𝑥2, 𝑥1𝑥3, 𝑥4𝑥2, 𝑥4𝑥3 ∈ 𝐸 (𝛤{0}(𝐿)). On the other hand, 

(𝑥2 → 𝑥3) ≠ 0, (𝑥3 → 𝑥2) ≠ 0, (𝑥1 → 𝑥4) ≠ 0, and (𝑥4 →  𝑥1)′ ≠ 0, since 𝑥2 to 𝑥3 and 𝑥1 to 

𝑥4 is not comparable. Therefore, 𝑥1𝑥4, 𝑥2𝑥3 ∉ 𝐸 (𝛤{0}(𝐿)). Thus, graph 𝛤{0}(𝐿) is not chordal. 

Hence, this is proved. 

Theorem 4.26. Let 𝐴 be an LI-ideal of 𝐿. Then, the following statements hold: 

(i) If 𝐴 is a prime LI-ideal. Then 𝛤𝐴(𝐿) is a complete graph. 

(ii) If 𝐴 is an ultra LI-ideal. Then 𝛤𝐴(𝐿) is a complete graph. 

(iii) If 𝐴 is an obstinate LI-ideal. Then 𝛤𝐴(𝐿) is a complete graph. 

Proof. (i) Straightforward by Theorems 3.3, 3.4, Definition 4.1of graph 𝛤𝐴(𝐿). 
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(ii) Straightforward by Theorems 3.3, 3.4, Definition 4.1of graph 𝛤𝐴(𝐿).  
(iii) Straightforward by Theorems 3.3, 3.4, Definition 4.1of graph 𝛤𝐴(𝐿).  
 

5- Conclusions 
 

In this paper, we introduce the zero divisor graphs 𝛤𝐴(𝐿) and 𝛤𝐴(𝐿) associated with lattice 

implication algebra regarding an LI-ideal 𝐴, where the vertex set of graphs 𝛤𝐴(𝐿) and 𝛤𝐴(𝐿) 

are the set of elements of L and two vertices x and 𝑦 are adjacent in graph 𝛤𝐴(𝐿)if and only if 

(𝑥 → 𝑦)′ ∈ 𝐴 and (𝑦 → 𝑥)′ ∈ 𝐴, and two distinct vertices 𝑥 and 𝑦 adjacent in graph 𝛤𝐴(𝐿) if 

and only if (𝑥 → 𝑦)′ ∈ 𝐴 or (𝑦 → 𝑥)′ ∈ 𝐴. In this article, we introduce concept of diameter, 

girth of graph. We show that 𝛤𝐴(𝐿) and 𝛤𝐴(𝐿) must be connected with diameter less than or 

equal 2, 𝑔𝑟(𝛤𝐴(𝐿)) = 3. 
   

6- Acknowledgments 
 

The author is grateful to technical and scientific committee of elites journal which my article 

distinguished between accepted articles in 3rd International conference on soft computing in 

guilan. 
 

 
7- References 

 

1.  Afkhami, M. Barati, Z. and Khashyarmanesh, K. (2014). A graph Associated to lattice, Springer, 

(63) 67-78. 

2.  Barati, Z. Khashyarmanesh, K. Mohammadi, F. and Nafar, Kh. (2012). On the associated graphs to 

a commutative ring, J. Algebra Appl, (11) 1-15. 

3. Bartlett, P. (2012). The chromatic number, Introduction to graph theory, 1-5. 

4. Beck, I. (1988). Coloring of commutative rings, J. Algebra, (116) 208-226.  

5. Diestel, R. (1997). Graph theory, Springer, New York, NY, USA.  

6. Farley, J. D. and Schmidt, S. D. (2008). Comparability graphs of lattices, J. Pure and applied algebra. 

(212) 832-839. 

7.  Jun, Y. B. (1999). On LI- ideals and prime LI- ideals of lattice implication algebras, J. Korean Math. 

Soc.  (36) 369-380. 

8. Jun, Y. B. Roh, E. H. and Xu, Y. (1998). LI- ideals in lattice implication algebras, Bull. Korean Math. 

Soc. (35) 13-23. 

9. Jun, Y. B. and Lee, K. J. (2011). Graphs based on BCI/BCK- algebras, International journal of 

mathematics and mathematical sciences, (2011) 1-8. 

10.  Mohammadian, A. Erfanian, A. and Farrokhi, M. (2014). Planar, toroidal and projective generalized 

Peterson graphs, Proc of the 7th Algebraic Combinatorics  Conference, Ferdowsi University of Mashhad, 

Iran, 36-38. 

11. Qin, K. Y. Xu, Y. and Jun, Y. B. (2002). Ultra LI- ideals in lattice implication algebras, 

Czechoslovak mathematical journal (52) 463-468. 

12. Tahmasbpour Meikola, A. (2018). Graphs of BCI/BCK- algebras, Turkish journal of mathematics, 

(42) 1272-1293. 

13. Tahmasbpour Meikola, A. (2019). Graphs of BCK- algebras based on dual ideal, Proc of the 9th 

seminar on Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, 

pp.22. 



 ( 9318سال  - 6شماره  -4جلد ) مجله نخبگان علوم و مهندسی

 
 

 

14. Tahmasbpour Meikola, A. (2020). Graphs of BCK- algebras based on fuzzy ideal and fuzzy dual 

ideal, Proc of the 1th International conference on physics, mathematics and development of basic 

sciences, University of Tehran, Iran. 

15. Tahmasbpour Meikola, A. (2020). Graphs of lattice implication algebras based on fuzzy filter and 

fuzzy LI- ideal, Proc of the 1th International conference on physics, mathematics and development of 

basic sciences, University of Tehran, Iran.  

16. Xu, Y. Ruan, D. and Qin, K. (2003). Lattice Valued-Logic, Springer, New York. 

17. Zahiri, O. and Borzooei, R. A. (2012). Graphs of BCI- algebras, International journal of mathematics 

and mathematical sciences, (2012) 1-16. 

. 

 


